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ABSTRACT

Context. Stars with an initial mass below ∼ 8 M⊙ evolve through the asymptotic giant branch (AGB) phase, during which they
develop a strong stellar wind, due to radiation pressure on newly formed dust grains. Recent observations have revealed significant
morphological complexities in AGB outflows, which are most probably caused by the interaction with a companion.
Aims. We aim for a more accurate description of AGB wind morphologies by accounting for both the radiation force in dust-driven
winds and the impact of a companion on the AGB wind morphology.
Methods. We present the implementation of a ray tracer for radiative transfer in the smoothed particle hydrodynamics (SPH) code
Phantom. Our method allows for the creation of a 3D map of the optical depth around the AGB star. The effects of four different
descriptions of radiative transfer, with different degrees of complexity, are compared: the free-wind approximation, the geometrical
approximation, the Lucy approximation, and the attenuation approximation. Finally, we compare the Lucy and attenuation approxi-
mation to predictions with the 3D radiative transfer code Magritte.
Results. The effects of the different radiative transfer treatments are analysed considering both a low and high mass-loss rate regime,
and this both in the case of a single AGB star, as well as for an AGB binary system. For both low and high mass-loss rates, the velocity
profile of the outflow is modified when going from the free-wind to the geometrical approximation, also resulting in a different wind
morphology for AGB binary systems. In the case of a low mass-loss rate, the effect of the Lucy and attenuation approximation
is negligible due to the low densities but morphological differences appear in the high mass-loss rate regime. By comparing the
radiative equilibrium temperature and radiation force to the predictions from Magritte, we show that for most of the models, the
Lucy approximation works best. Although, close to the companion, artificial heating occurs and it fails to simulate the shadow cast
by the companion. The attenuation approximation leads to stronger absorption of the radiation field, yielding a lower equilibrium
temperature and weaker radiation force, but it produces the shadow cast by the companion. From the predictions of the 3D radiative
transfer code Magritte, we also conclude that a radially directed radiation force is a reasonable assumption.
Conclusions. The radiation force plays a critical role in dust-driven AGB winds, impacting the velocity profile and morphological
structures. For low mass-loss rates, the geometrical approximation suffices, however for high mass-loss rates, a more rigorous method
is required. Among the studied approaches, the Lucy approximation provides the most accurate results, although it does not account
for all effects.

Key words. stars: winds, outflows – method: numerical – hydrodynamics – stars: AGB and post-AGB – radiative transfer

1. Introduction

Asymptotic giant branch (AGB) stars are the late evolutionary
stage of low- and intermediate-mass stars (0.8 M⊙ ≲ M⋆ ≲ 8
M⊙). These stars exhibit mass-loss rates that range from 10−8

up to 10−5 M⊙ yr−1, with terminal wind speeds of 5 − 30 km s−1

(Habing & Olofsson 2004; Ramstedt et al. 2008). To achieve
such outflows, a mechanism is needed to overcome the stellar
gravitational attraction. For AGB stars, the wind is believed to
be a pulsation-enhanced dust-driven wind. A complex interplay
between strong convection in the AGB atmosphere, and large-
amplitude long-period pulsations, forms shock waves in the at-
mosphere (Freytag & Höfner 2008; Freytag et al. 2017; Freytag
& Höfner 2023). These shocks levitate the gas into sufficiently
cool regions where it is able to condensate into dust. Dust par-
ticles can efficiently absorb stellar radiation, such that they are
pushed outwards by the radiation force. When moving outwards,

the dust collides with the surrounding gas and drags it along.
This creates an efficient mechanism for mass loss around AGB
stars (Lamers & Cassinelli 1999; Höfner & Olofsson 2018).

High-resolution observations of AGB stars have revealed
complex structures in their outflows (Ramstedt et al. 2014;
Kervella et al. 2016; Decin et al. 2020). One of the leading hy-
potheses to explain these morphologies is the presence of a bi-
nary companion, gravitationally shaping the outflow into com-
plex morphologies. To investigate this hypothesis, 3D hydrody-
namic studies have been performed using both grid-based and
smoothed particle hydrodynamics (SPH) codes (e.g. Theuns &
Jorissen 1993; Mastrodemos & Morris 1999; Kim & Taam 2012;
Saladino et al. 2018, 2019; Maes et al. 2021; Malfait et al. 2021;
Aydi & Mohamed 2022; Lee et al. 2022). Most of these stud-
ies use the so-called free-wind approximation where the gravity
of the mass-losing star is ignored, and none of the complexi-
ties of the wind-launching mechanism are included. To improve
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the modelling of the outflow simulations, recent attempts have
been made to include more of the underlying physical mecha-
nisms. Using a grid-based code, Chen et al. (2017, 2020) con-
sidered pulsations and an approximate form of dust opacity and
radiative transfer, showing that these implementations alter the
resulting outflow morphologies and could lead to the formation
of circumbinary disks. In SPH codes, Aydi & Mohamed (2022)
simulated pulsations to launch the wind following the 1D mod-
elling of Bowen (1988), while Siess et al. (2022) implemented
dust nucleation.

Previous studies (e.g. Theuns & Jorissen 1993; Mastrodemos
& Morris 1999; Kim & Taam 2012; Maes et al. 2021; Malfait
et al. 2021) showed that the the structures, emerging from the in-
teraction of a companion with the AGB wind, depend on the rel-
ative magnitude of the wind and orbital velocities. Understand-
ing structure formation with a mass-losing AGB star is therefore
tightly linked with understanding the velocity of the wind. To
model this wind velocity realistically, an accurate acceleration
prescription is required, including a realistic description of the
radiation force.

Radiative transfer is thus a key ingredient for stellar wind
models, as it provides the driving force in dust-driven winds.
However, except for ’star-in-the-box’ type simulations (Freytag
& Höfner 2023), performing full radiative transfer calculations
on-the-fly in spatially extended simulations is not yet feasible
due to the large computational cost. Therefore, one needs to re-
sort to approximate radiative transfer descriptions to investigate
the effect of radiation on the shaping of the wind on large scales,
potentially perturbed by a companion.

In this paper, we present the implementation of a ray tracer
in the SPH code Phantom, and use it to define four different ra-
diative transfer approximations, each of which yielding a differ-
ent prescription for the radiation force. Each approximation in-
creases the complexity, from no radiative transfer (free-wind ap-
proximation), to geometrical dilution (geometrical approxima-
tion), to accounting for radiation not exclusively coming from
the AGB star (Lucy approximation), and attenuation of the stel-
lar radiation (attenuation approximation). We analyse the effects
of the approximations on the velocity profiles and morphological
structures, considering two mass-loss rate regimes, both in the
case of a single AGB star, as well as in an AGB binary system.
Finally, we compare the Lucy and attenuation approximations to
the results of the 3D radiative transfer code Magritte.

The outline of this paper is as follows. In Sect. 2, we present
the four different radiative transfer prescriptions investigated in
this study, as well as their numerical implementation. In Sect. 3,
the effects of these prescriptions on the velocity profile of a sin-
gle AGB star are investigated. In Sect. 4, the changes on the mor-
phological structures of a binary system with a primary mass-
losing AGB star are analysed. A comparison between the ap-
proximations and the full 3D radiative transfer code Magritte is
given in Sect. 5, and the main results are summarized in Sect. 6.

2. Model and setup

2.1. Smoothed particle hydrodynamics

The smoothed particle hydrodynamics (SPH) code Phantom
(Price & Federrath 2010; Lodato & Price 2010; Price et al. 2018)
is used for our 3D hydrodynamic simulations. In the framework
of SPH (Gingold & Monaghan 1977; Lucy 1977), the density
distribution of a particle, the equations of motion, and energy

conservation read (Price et al. 2018):

ρi =
∑

j

m jW
(∣∣∣ri − r j

∣∣∣ , hi

)
, (1)

dvi

dt
= −
∑

j

m j

[
Pi + qi

ρ2
iΩi
∇iWi j (hi) +

P j + q j

ρ2
jΩ j
∇iWi j(h j)

]
+ aext,i ,

(2)
dui

dt
=

Pi

ρ2
aΩi

∑
j

m j(vi − v j) · ∇aWab (ha) + Λshock −
Λcool

ρ
, (3)

where i denotes the SPH particle, and j its neighbouring parti-
cles. Particles are defined by their (constant) mass m, position r,
velocity v, and specific internal energy u. The calculation of the
local density ρ and pressure P requires knowledge of the neigh-
bours, which are found within the support of the smoothing ker-
nel W (particles within Rkernh, where Rkern is the (dimensionless)
kernel radius and h the smoothing length). We use the M4 cubic
spline kernel, which vanishes outside a radius r = 2h. This leads
on average to a number of neighbours equal to Nneigh = 57.9
(Price et al. 2018). In Eq. (2), aext,i represents the external ac-
celerations applied to the particle i. In this setup, the forces are
the gravitational attraction of the star(s) and of the additional ra-
diation force on the particle. In a binary system, it is given by

aext,i = −
GMAGB

r2
i,1

(1 − Γi) r̂i,1 −
GMcomp

r2
i,2

r̂i,2 , (4)

where ri,1 and ri,2 are the distances from the position of the i’th
particle to the AGB star and the companion, respectively. Γi is
the Eddington factor, which is given by

Γi =
(κd + κg)Fi r2

i,1

GMAGB c
, (5)

in which κd and κg are the opacity of the dust and gas, respec-
tively, and Fi is the flux coming from the AGB star, reaching
the i’th particle. The widely adopted free-wind approximation
implies setting Γi equal to one, not taking into account the po-
tentially very complex behaviour of Γ (see Sect. 2.2.1 for a more
detailed description).

The calculation of the dust opacity is complex. Several pre-
scriptions are available in Phantom, including the complex nu-
cleation theory (Siess et al. 2022), which is based on the theory
of moments developed by Gail & Sedlmayr (2013). However,
for the purpose of this paper, to reduce the computational cost
and the complexity of the interpretation of the results, we use
the simplified analytic dust opacity given by Bowen (1988)

κd(Teq) =
κmax

1 + exp
[
(Teq − Tcond)/δ

] , (6)

where Teq is the dust temperature, Tcond = 1 200 K the dust con-
densation temperature, κmax = 6 cm2 g−1 the maximal dust opac-
ity, and δ = 60 K the temperature range over which dust con-
densation occurs. These parameters can be changed to model
different types of dust, where this setup describes carbon-rich
dust (Bowen 1988). For the gas opacity, a constant value of
κg = 2 × 10−4 cm2 g−1 is chosen (Bowen 1988).

In Eq. (3), Λshock represents the energy dissipation rate re-
quired to give the correct entropy increase in shocks. It consists
of viscous shock heating, artificial thermal conductivity, and ar-
tificial resistivity if magnetic fields are included (for details, see
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Price et al. 2018). The cooling rate is represented by Λcool. Two
processes have been included in our simulations. They corre-
spond to the Bowen (1988) prescription which is expressed as

ΛBowen =
3R
2µ

Tg − Teq

C′
, (7)

where R is the gas constant, µ the mean molecular weight, and C′
the parametric cooling rate, taken to be 3×10−5 g s cm−3 (Bowen
1988). This expression, which is proportional to the tempera-
ture difference between the gas and the dust, was constructed to
mimic diffusion between the two species. Furthermore, cooling
by neutral hydrogen, ΛH, is also considered, following the for-
mula given by Spitzer (1978). The total cooling rate is thus given
by Λcool = ΛBowen + ΛH.

2.2. Radiative transfer approximations

The transport of energy via radiation can be considered along
specific directions, often referred to as rays. The frequency-
dependent (indicated with the subscript ν) radiative transfer
equation along a ray reads

dIν
ds
= ην − ανIν . (8)

Here, Iν represents the intensity (i.e. the observable quantity), ds
is a path element along the ray, ην is the emission coefficient,
which is a measure for the radiative energy that is gained along
to the ray, and αν is the absorption coefficient, which quantifies
the radiative energy lost along the ray (αν = κνρ). By defining
the frequency-dependent optical depth, τν, as

dτν = ανds , (9)

the transfer equation can be re-written as

dIν
dτν
= S ν − Iν , (10)

where S ν = ην/αν is referred to as the source function. The trans-
fer equation can formally be solved, yielding

Iν(s) = Iν(0) e−τν(s) +

∫ τν(s)

0
S ν e−(τν(s)−τ)dτ . (11)

For a homogeneous medium, the source function does not
change throughout the medium, and can be moved outside of
the integral, yielding the solution

Iν = Iν(0)e−τν + S ν(1 − e−τν ) . (12)

From the intensity, we define the mean intensity Jν and flux Fν

Jν =
1

4π

∮
Iν(θ, ϕ) dΩ , (13)

Fν =
∮

Iν(θ, ϕ) cos θ dΩ , (14)

where dΩ = sin θdθdϕ is the differential solid angle, and θ the
angle between the direction of the intensity and a normal vec-
tor of the surface through which we are considering the flux.
Under the condition of local thermodynamic equilibrium (LTE),
the source function equals the Planck function, S ν = Bν(T ), and∫ ∞

0
κνBν dν =

∫ ∞
0
κνJν dν . (15)

In general, knowledge of the mean intensity, Jν, requires to solve
the radiative transfer equations throughout the entire medium.
However, some approximations can allow us to avoid this costly
computation. In our study, we restrict ourselves to the grey case
(i.e. ignoring any frequency dependence). Assuming radiative
equilibrium, the frequency-integrated mean intensity and flux are
given by

J =

∫ ∞
0

Jν dν =
∫ ∞

0
Bν dν =

σsb

π
T 4 , (16)

F =

∫ ∞
0

Fν dν , (17)

where σsb is the Stefan-Boltzmann constant. The computation
of the variables F and Teq, using a full radiative transfer descrip-
tion, is too computationally demanding. In order to alleviate this
problem, we investigate four different approximate descriptions,
and evaluate their applicability for 3D stellar wind models.

2.2.1. Free-wind approximation

The free-wind approximation is the most drastic approximation,
since no explicit treatment of the radiation transport is included,
and Γ (Eq. 5) is simply set equal to one, implying the SPH par-
ticles do not feel the gravitational pull of the mass-losing star,
as it is artificially balanced by the radiation force. Despite the
crudeness of this approximation, it provides a simple way to
launch a wind without requiring a full treatment of pulsations
and dust formation. This approximation was introduced by The-
uns & Jorissen (1993) and has been widely adopted since, be-
cause of its simplicity (e.g. Mastrodemos & Morris 1999; Kim
& Taam 2012; Liu et al. 2017; Saladino et al. 2019; Maes et al.
2021; Malfait et al. 2021; Lee et al. 2022).

2.2.2. Geometrical approximation

Assuming a spherical star of radius R⋆, an SPH particle located
at a distance r from the source ‘sees’ the star over an opening
angle θM , given by sin θM = R⋆/r. Furthermore, assuming that
the star is isotropically emitting a constant intensity Iν, such that
Iν = Jν, the flux received at the particle’s location is

Fν(r) = Iν

∫ 2π

0
dϕ
∫ θM

0
cos θ sin θ dθ

= πIν sin2 θM = Fν(R⋆)
R2
⋆

r2 . (18)

In the grey approximation, neglecting all frequency dependen-
cies, the expression for Γ (Eq. 5) takes the standard form

Γ =
(κd + κg)LAGB

4πcGMAGB
, (19)

where LAGB = 4πR2
⋆F(R⋆) is the AGB luminosity. In this expres-

sion, the Eddington factor depends on the dust opacity, which
requires the dust temperature. From Eq. (13), the mean intensity
reads

Jν(r) =
Iν
4π

∫ 2π

0
dϕ
∫ θM

0
sin θ dθ =

1
2

Iν (1 − cos θM)

=
1
2

1 −
√

1 −
(R⋆

r

)2 Iν = W(r) Iν , (20)
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where W(r) is often referred to as the geometrical dilution factor.
Assuming radiative equilibrium, the local mean intensity can be
related to the radiative equilibrium temperature by

T 4
eq(r) =

π

σsb
J(r) =

1
2

1 −
√

1 −
(R⋆

r

)2T 4
⋆ . (21)

This temperature is associated to the dust, because it absorbs
most of the radiation due to its high intrinsic opacity. In this sim-
ple approximation, Γ and Teq can both be evaluated locally, mak-
ing it easy to implement in a hydrodynamics code. However, we
should emphasize that these expressions heavily rely on the as-
sumptions of spherical symmetry, radiative equilibrium, and that
the local mean intensity is dominated by the intensity of the AGB
star. This approach was used, for instance, by Aydi & Mohamed
(2022).

2.2.3. Lucy approximation

Assuming spherical symmetry, local thermodynamic equilib-
rium (LTE; which implicitly assumes that collisions domi-
nate over radiative processes, see e.g. Gail & Sedlmayr 2013,
Sects. 8.1 and 8.2), and an optically thin extended envelope, an
improved prescription for J can be obtained, which lifts the as-
sumption that J is dominated by the intensity of the AGB star.
Following Lucy (1971, 1976) (also described in Appendix A1.2
of Gail & Sedlmayr 2013), the frequency-integrated mean in-
tensity J, as a function of distance r from the central star, reads
(Eq. 12 from Lucy 1971)

J(r) =

12
1 −

√
1 −
(R⋆

r

)2 + 3
4
τL

 J(R⋆) , (22)

where the Lucy optical depth τL is given by

τL =

∫ ∞
r

(κd + κg) ρ
(R⋆

r′

)2
dr′ . (23)

The Lucy optical depth can physically be interpreted as quanti-
fying the radiation that is absorbed by the surrounding envelope,
outside a given distance r from the AGB star. This radiation is
re-emitted isotropically (because of radiative equilibrium) and
provides a positive feedback contribution to the mean intensity
at the considered location r. From Eq. (16), we immediately get
the equilibrium temperature (Eq. 3 of Lucy 1976):

T 4
eq(r) =

π

σsb
J(r) =

12
1 −

√
1 −
(R⋆

r

)2 + 3
4
τL

T 4
⋆ . (24)

If the spherical symmetry is broken, it is still possible to estimate
the dust temperature at a given position by replacing the angle-
independent radial coordinate (r) by (r, θ, ϕ) in the calculation of
τL. In this generalized form, Eq. (24) writes

T 4
eq(r, θ, ϕ) =

12
1 −

√
1 −
(R⋆

r

)2 + 3
4
τL(r, θ, ϕ)

T 4
⋆ , (25)

where θ and ϕ are the azimuthal and polar angles, respectively,
indicating the direction of the ray, originating from the AGB star.
This approach can better account for local dusty regions in the
simulation. The Lucy approximation is often used in wind sim-
ulations to estimate the dust temperature (e.g. Bowen 1988; Sal-
adino et al. 2018, 2019; Lee et al. 2022).

2.2.4. Attenuation approximation

If the medium between the AGB star and an SPH particle is
opaque and only absorbs the stellar radiation without radiating
itself (i.e. S ν = 0), then Eq. (12) simplifies to

Iν = Iν(0) e−τν , (26)

which does not depend on the symmetry of the problem. In the
grey approximation, the flux at the particle’s location then be-
comes

F(r, θ, ϕ) = F(R⋆)
R2
⋆

r2 e−τ(r,θ,ϕ) =
LAGB

4πr2 e−τ(r,θ,ϕ) , (27)

where the optical depth τ is given by

τ(r, θ, ϕ) =
∫ r

R⋆
(κd + κg) ρ dr′ . (28)

Likewise, the expression for the dust temperature now reads

T 4
eq(r, θ, ϕ) =

1
2

1 −
√

1 −
(R⋆

r

)2T 4
⋆ e−τ(r,θ,ϕ). (29)

Here, the Lucy optical depth (Sect. 2.2.3) has disappeared be-
cause there is no emission, and, hence, no external source of ra-
diation can heat up the medium. This prescription was used, for
instance, by Chen et al. (2017, 2020) in their study of the mor-
phology of AGB outflows, perturbed by a stellar companion.

2.3. Ray-tracing implementation in Phantom

The Lucy and attenuation approximations, described above, re-
quire the calculation of the optical depth τ or τL. These are non-
local quantities to be evaluated along the line of sight, connect-
ing an SPH particle and the AGB star. For the computation of
these quantities, we implemented the ray tracer described in this
section1. More details, for instance, about the trade-offs made
during development, can be found in Appendix A.

2.3.1. Algorithm

Since SPH particles are not located on a mesh, we opt for the
meshless ray tracer that is implemented in Magritte (De Ceuster
et al. 2020a,b). Magritte is a 3D radiative transfer code, de-
veloped to handle both mesh-based and meshless data, and can
therefore work with SPH.

The algorithm is visually explained in Fig. 1. Starting from
a position P1, a ray is traced in the R-direction. The algorithm
searches for the nearest neighbours, using the information pro-
vided by the kd-tree of the SPH particles available in Phantom.
From these neighbours, it selects the point closest to the ray, pro-
vided that the point lies in the direction of the ray and is within
a distance Rkernh, where h is the smoothing length and Rkern = 2.
This search is repeated until a given location, or the edge of the
numerical domain, is reached.

To calculate optical depths, a segment will be defined as the
distance between two subsequent points projected on the ray, for
instance, between K1 and K2 (the projections of P1 and P2, re-
spectively) in Fig. 1. The optical depth can then be approximated

1 The routine can be found in the source code of Phantom
at https://github.com/danieljprice/phantom/blob/master/
src/main/utils_raytracer.f90
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Fig. 1. Visual representation of the ray-tracing algorithm. Starting from
the upper right corner at point P1 and following the direction of the ray,
the subsequent point P2 is determined within the sphere of influence of
radius Rkernh. The procedure is then repeated until the boundary of the
domain is reached (see text for explanations).

by a sum over all segments created. using the ray-tracer. As such,
the optical depth can be discretized as

τ =

∫ r

R⋆
dτ ≈

∑
i

∆τi =
∑

i

(
κi ρi + κi+1 ρi+1

2

)
∆si , (30)

where the index, i, ranges over all points encountered along the
ray, form the stellar surface at R⋆ to the radial distance from the
AGB star, r, ∆si = dist(Ki+1,Ki) is the length of the segment,
κi, and ρi are the opacity and density, respectively, at point Ki.
∆si can easily be determined from geometrical considerations,
while κi ρi requires a little more attention. It is evaluated using
the SPH smoothing kernel, considering only the particles within
two smoothing lengths, yielding

κi ρi =
∑

j: |ri−r j |<2hi

m j κ jW(ri − r j, h j) . (31)

The opacity κi ρi is computed at each point, Ki, along the ray and
can then be used in Eq. (30) to give the integrated optical depth.

2.3.2. 3D optical depth interpolation

To calculate the optical depth throughout the numerical domain,
the most physically correct approach is to trace a ray from each
SPH particle to the AGB star. This approach is similar to that
of Kessel-Deynet & Burkert (2000). However, it is very com-
putationally intensive and inefficient, because the optical depths
obtained for the particles close to the AGB star are re-calculated
whenever considering particles further out. One way around this,
is to trace a predefined number of rays originating from the star,
and interpolate the optical depth from the values of τ on these
rays. The idea of tracing only a predefined number of rays, is
common to most 3D ray-tracing radiative transfer algorithms
(see e.g. Altay & Theuns 2013; De Ceuster et al. 2020a). Start-
ing from the surface of the star (at radius R⋆), rays are traced
outwards, and the optical depth increments, ∆τi, are calculated,
accumulated, and stored for each segment and for each ray. Now,
to obtain the optical depth at each SPH particle, the following
interpolation scheme is used. First, for each SPH particle, lo-
cated at a distance r from the star, the four rays passing closest

Table 1. Model parameters for the single star simulation.

Parameter Value Unit
ṀAGB 10−8 or 3 × 10−6 M⊙ yr−1

MAGB 1.02 M⊙
LAGB 4384 L⊙

Teff,AGB 2874 K
RAGB 1.24 au
Rinj 1.24 au
vinj 33 or 25.2 km s−1

γ 1.2
µ 2.381

Notes. ṀAGB is the mass-loss rate of the AGB star, MAGB its mass, LAGB

its luminosity, Teff,AGB its surface temperature, and RAGB its radius. Rinj

is the wind injection radius and vinj the initial injection velocity (See
Siess et al. 2022, for details about the wind injection properties). γ is
the adiabatic index and µ the mean molecular weight of the gas.

to the particle are identified. Then, the optical depth along each
of these four rays is linearly interpolated at the distance r. Fi-
nally, the optical depth values of the four rays (all evaluated at r)
are used to estimate τ at the particle’s location. The accuracy of
this approach highly depends on the number of rays, as well as
on their spatial distribution (see Appendix A.3 for more details).

To obtain a uniform distribution of rays in 3D, we use the
HEALPix package (Górski et al. 2005), specifically designed for
this problem. HEALPix divides the 2-sphere into isolaterally dis-
tributed pixels of equal area. We use the unit vectors pointing
to the centre of each pixel as the directions for the rays. In the
nested scheme, HEALPix can refine the spatial division by in-
creasing the number of pixels, such that each pixel is split into
four. Each time this happens, the order of the scheme increases
by one. So, at order zero, the 2-sphere is divided into 12 pixels,
and for a general order o, the number of pixels is nrays = 12× 4o.
HEALPix also provides functions to obtain the pixel associated
with every point on the 2-sphere. This means that when the pixel
unit vectors are used as directions along which to trace our rays,
every point in the simulation can automatically be associated
with a ray. In our simulations we use HEALPix-order 5, which
corresponds to nrays = 12288.

3. Single-star models

To investigate the impact of each of the four radiative transfer
prescriptions on the outflow velocity profile, we perform eight
single star simulations adopting a low (10−8 M⊙ yr−1) and high
(3×10−6 M⊙ yr−1) mass-loss rate. These mass-loss rates roughly
cover the range observed in AGB stars (Habing & Olofsson
2004; Ramstedt et al. 2008). Higher mass-loss rates where not
considered, because in the Lucy and attenuation approximations
a wind could not be launched with these parameters. The proper-
ties of the models are listed in Table 1, where we adopt the stel-
lar parameters from Chen et al. (2020). In the geometrical, Lucy,
and attenuation approximation, the wind injection velocity is set
to vinj = 33 km s−1. With this initial velocity, the particles can
reach the dust condensation radius, which is a necessary condi-
tion to launch a wind, and have reasonable terminal velocities in
agreement with observations. For the free-wind approximation,
which does not take into account dust condensation, an injection
velocity of vinj = 25.2 km s−1 is chosen to match the terminal
wind speed of the other cases.
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Fig. 2. Velocity profiles from the SPH simulation (points) and 1D
semi-analytical wind solution (lines) in a single-star configuration for
the low (ṀAGB = 10−8 M⊙ yr−1, upper panel) and the high (ṀAGB =
3 × 10−6 M⊙ yr−1, bottom panel) mass-loss rate models. The free-wind
approximation (red SPH points and 1D solid line profile), the geomet-
rical approximation (light-green and dashed line), the Lucy approxima-
tion (orange and dash-dotted line), and the attenuation approximation
(blue and dashed-double dotted line) are shown. The geometrical, Lucy,
and attenuation approximation overlap in the upper panel. The vertical
lines in the lower panel indicate the corresponding dust condensation
radius for the geometrical, Lucy, and attenuation approximation. The
dotted line shows the escape velocity.

3.1. Low mass-loss rate

The velocity profiles obtained in the low mass-loss rate regime
(ṀAGB = 10−8 M⊙ yr−1) are displayed in the upper panel of
Fig. 2. In the free-wind approximation (red), the material is im-
mediately accelerated outwards, and propagates at almost con-
stant velocity. As Γ is set equal to one, no external force is ap-
plied, and only the pressure gradient close to the star influences
the wind velocity. For the geometrical approximation (light-
green), close to the wind injection zone, the material is too hot
to condensate into dust (see Fig. 3, upper panel) and without the
radiative acceleration, the gas pressure gradient is insufficient to
drive the wind. Therefore, the velocity of the material initially
decreases until it reaches the dust condensation radius (where
Teq = Tcond at RGe,dust = 3.6 au, see Fig. 3 upper panel). At this
point, dust forms and the radiation force on the particles accel-
erates the material outwards. This results in a different velocity
profile than the free-wind approximation. The velocity profiles
in the Lucy and attenuation approximations (orange and blue)
look identical to that of the geometrical approximation, because

Fig. 3. Radiative equilibrium temperature of the SPH particles (points)
and 1D semi-analytical wind solutions (lines) in a single-star configu-
ration for the low mass-loss (ṀAGB = 10−8 M⊙ yr−1, upper panel) and
the high (ṀAGB = 3×10−6 M⊙ yr−1, bottom panel) mass loss-rates mod-
els. The free-wind approximation (red SPH points and 1D solid line
profile), the geometrical approximation (light-green and dashed line),
the Lucy approximation (orange and dash-dotted line), and the attenua-
tion approximation (blue and dashed-double dotted line) are shown. The
geometrical, Lucy, and attenuation approximation overlap in the upper
plot. The vertical lines in the lower panel indicate the corresponding
dust condensation radius for the geometrical, Lucy, and attenuation ap-
proximation.

in the low mass-loss regime, densities in the wind are low. As a
consequence, the optical depths τL (Eq. 23) and τ (Eq. 28) are
very small, such that their effects are negligible.

3.2. High mass-loss rate

The velocity profiles obtained in the high mass-loss rate regime
(ṀAGB = 3 × 10−6 M⊙ yr−1) can be seen in the bottom panel of
Fig. 2. In the free-wind and geometrical approximation (red and
light-green), the equations of motion (Eqs. 1, 2 and 3) are in-
dependent of the mass-loss rate, even with the Bowen cooling
prescription (Eq. 7) activated. However, this conclusion does not
hold anymore if HI cooling is considered, because of the non-
linear dependence of this rate on the density. In these single-star
models, no shock waves are present, the temperature remains be-
low 3000 K, and cooling due to HI is inefficient. Therefore, the
velocity profiles in the free-wind and geometrical approximation
appear to be identical to the low mass-loss rate case (upper panel
of Fig. 2). However, this is not the case for the Lucy and the at-
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Fig. 4. Density distributions in a slice through the orbital plane for the four simulations, each of which using different radiative transfer prescription:
free-wind (top left), geometrical (top right), Lucy (bottom left), and attenuation (bottom right) approximation, for the high mass-loss rate case with
a binary companion. Both stars are on the x-axis, where the primary AGB star is on the left, and the companion on the right.

tenuation approximation (orange and blue), because the density
is sufficiently high that τL (Eq. 23) and τ (Eq. 28) become non-
negligible, or even larger than the dilution factor W(r). This di-
rectly impacts the dust temperature profiles (see Fig. 3, bottom
panel) and modifies the dust condensation radii (vertical lines in
Figs. 2 and 3). An illustration of the optical depths profiles is
presented in Figs. B.1 and B.2.

In the Lucy approximation, the dust temperature is increased
compared to the geometrical case (Eq. 25). Although τL is small,
it is multiplied by T 4

⋆, which can make its contribution signifi-
cant. The condensation temperature is thus reached further out
from the AGB star, at RLu,dust = 4.85 au (Fig. 3). For the attenua-
tion approximation, the temperature decreases rapidly, owing to
the e−τ factor (Eq. 29), and as a consequence, dust forms closer
to the AGB star (at RGe,dust = 3.50 au). Thus, the radiation force
is activated at higher velocities compared to the Lucy simulation.
Once the wind material has passed the dust condensation radius,
the radiation force becomes independent of the approximation,

used to determine Teq, since the dust opacity is now almost con-
stant (κd ≈ κmax). Beyond the condensation radius, the shape of
the velocity profile in the Lucy approximation is similar to that
of the geometrical approximation, but with a lower asymptotic
value. This is different in the attenuation approximation. Here,
not only does the dust temperature decrease exponentially with
τ, but so does the radiation force (Eq. 27). Thus, the acceleration
of the material drops more rapidly, and the terminal wind veloc-
ity reaches lower velocities, yielding a flatter velocity profile in
this case.

4. Binary-star models

An interesting application of the present implementation is
studying the impact of a companion star or planet on the dynam-
ics and morphology of the AGB wind. It is important that we
investigate the applicability and differences of the four approx-
imations in three-dimensional, non-spherically symmetric mod-
els, in which a binary companion is perturbing the outflow. We
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Fig. 5. Same as Fig. 4, but for the velocity distribution.

used the same setup as before, but add a companion with mass
Mcomp = 0.51 M⊙ and an accretion radius Racc = 0.1 au at an
orbital separation of 6 au in a circular orbit (adopted from Chen
et al. 2020). The simulations are evolved for a total of six orbital
periods, reaching a quasi-steady state. As explained in Sect. 3,
the Lucy and attenuation approximation give almost identical re-
sults as the geometrical approximation in the low mass-loss rate
regime. Further, for the geometrical and free-wind approxima-
tion, the effect of changing the mass-loss rate is weak, hence we
limit this discussion to the high mass-loss rate regime.

4.1. Wind-companion interaction strength

Maes et al. (2021) found that the ratio of the energy density of
the companion to the kinetic energy of the wind gives a good
indication of the complexity of the outflow and magnitude of the
wind-companion interaction. This parameter is defined as

ε =
egrav

ekin
=

(24G3M2
compMAGB)1/3

v2
wa(1 − e)

, (32)

where vw is an estimate of the wind velocity at the location of
the companion, which is calculated as

vw =
√

v2
single(r = a) + v2

AGB, (33)

with vsingle(r) the wind velocity at radius r in the correspond-
ing single-star model, vAGB the orbital velocity of the AGB star,
and e the eccentricity (here zero). The higher ε, the stronger
the interaction of the companion with the wind, and the more
complex the resulting outflow is expected to be. The only ef-
fect of our different approximations on this ε value, is the
change in vsingle(r = 6 au), for which the four different values
can be read from the bottom panel of Fig. 2. This velocity is
∼ 26, 20, 18, and 12 km s−1 in case of the free-wind, geometrical,
attenuation, and Lucy approximation, respectively. This results
in ε values of 0.4, 0.7, 0.8, and 1.7, respectively. This indicates
that the interaction of the companion with the wind is expected
to be the weakest for the free-wind approximation, and strongest
for the Lucy approximation.
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Fig. 6. Relevant properties of the high mass-loss rate binary simulation using the Lucy approximation. The density is plotted in the upper left panel,
the Lucy optical depth in the upper middle panel, the dust temperature in the top right panel, the velocity in the lower left panel, the opacity in the
lower middle panel, and the Eddington factor in the lower right panel. The thin solid black contour indicates the location of the dust condensation
surface.

Fig. 7. Same as Fig. 6 but for the attenuation approximation. τL is replaced by τ in the upper middle panel.
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4.2. Wind structures

To illustrate the morphology and wind structures that result from
the wind-companion interaction, Figs. 4 and 5 display the den-
sity and velocity maps, respectively, in slices through the or-
bital plane for the four approximations. The density profile in
the meridional plane can be found in Fig. B.3. These figures re-
veal that the wind structures and global morphologies depend
sensitively on the treatment of the radiative transfer.

In the free-wind approximation, the relatively weak wind-
companion interaction strength (low ε < 1), creates a two-edged
spiral structure attached to the companion, that shapes the wind
into an approximate Archimedean spiral, as can be seen in the
density profile in the orbital plane (Fig. 4, upper left). The cre-
ation of such Archimedean spirals is well studied and explained
in detail by, for example, Malfait et al. (2021) and Maes et al.
(2021). Due to the high wind velocity with respect to the or-
bital velocity, this thin high-density spiral propagates rapidly
outwards with a radial velocity of about 27 km s−1, which re-
sults in relatively wide inter-arm low-density gaps, with a width
approximately equal to the distance travelled by the spiral struc-
ture in one orbital period (see Fig. 5, upper left). The meridional
plane density distribution (Fig. B.3, upper left) shows that in the
edge-on view, these spirals appear as thin, concentric arcs.

In the geometrical and attenuation approximation, the wind
structure close to the stars is similar to the free-wind approxima-
tion, with a two-edged spiral structure attached to the companion
(upper and lower right panels in Fig. 4). Although the wind ve-
locity around the companion, and thereby the ε value, is similar
for these approximations, the morphology of these systems is
different. As the velocity in the geometrical approximation ac-
celerates up to about ∼ 27 km s−1, reaching the same terminal
velocity as the free-wind model (see Figs. 2 and 5), the 2-edged
spiral remains again relatively thin, and the inter-arm separation
large.

This is not the case for the attenuation approximation, where
the wind material in the high-density spirals only reaches a ve-
locity of ∼ 20 km s−1, and the low-density material in between
the spirals has a velocity of ∼ 10 − 15 km s−1 (Fig. 5). This
makes that the spiral structure more compressed, with smaller
low-density inter-arm gaps. Because there is a velocity disper-
sion within the spiral, the outer frontward spiral edge has a
higher radial velocity than the inner backward spiral edge, such
that after ∼ 1.75 orbital periods the outer spiral edge catches up
and interacts with the previous inner spiral edge, that originated
one orbital period earlier (around x = 0 au, y = 80 au). After
this interaction, one approximate Archimedean spiral structure
remains, and the inter-arm low-density gaps disappear (Malfait
et al. 2021; Maes et al. 2021). In the meridional plane, the spi-
ral appears again as arcs (Fig. B.3, lower right). This plot also
shows that the high-density structure is more compressed, with
smaller low-density inter-arc regions, and that the outer edge of
the widening arcs catches up and interacts with the previous in-
ner edge (overlap first visible at x = 100 au, y = 0 au).

Due to the larger dust condensation radius in the Lucy ap-
proximation, the wind velocity around the location of the com-
panion is significantly lower than in the previously discussed
models (bottom panel in Fig. 2, at r = 6 au, and r < 10 au
region in Fig. 5). This allows the companion to compress more
wind material around it, such that instead of a 2-edged spiral
structure, there is one spiral originating behind the companion,
and a second 2-edged bow shock spiral originating in front of
the companion (Malfait et al. 2021; Maes et al. 2021). This can
be seen in more detail in the zoomed-in density plot in the up-

per left plane of Fig. 6. Moreover, due to the strong compression
of gas around the companion, as well as sufficient cooling to re-
duce the thermal pressure, an accretion disk has formed. In the
Lucy approximation, there is no radiative force active close to
the companion (see Sect. 4.3), so the forming accretion disk is
not blown away, facilitating its formation. This accretion disk is
shown in more detail in Fig. B.4, where the density distribution
is overplotted with velocity vectors. Fig. B.4 displays how ma-
terial spirals in towards the companion sink particle through a
high-density disk. For a more elaborate description of accretion
disks, see Lee et al. (2022) and Malfait et al. (in prep). In the
meridional plane, the bow shock spiral translates into an expan-
sion of the edge-on arcs (Fig. B.3, lower right).

Chen et al. (2020) used the attenuation approximation in
their simulations, and report the formation of both an accre-
tion and a circumbinary disk. The absence of these features in
our computations stems from the fact that the terminal wind ve-
locity and cooling prescriptions are different between these two
works. In our simulations, the terminal velocity is ∼ 20 km s−1,
higher than the value of ∼ 15 km s−1 found by Chen et al. (2020).
With a faster wind, the particles interact less with the companion
(Sect. 4.1) and pass over the companion preventing the formation
of the disk. The disk may, however, become visible when de-
creasing the accretion radius of the companion (Lee et al. 2022).
The same is true for the circumbinary disk, as a higher terminal
wind velocity prevents the formation of such structures. Chen
et al. (2020) also include molecular cooling, associated with H2,
H2O, and CO, which contribute to reduce the heat (pressure)
and to provide more favourable conditions for gas condensation.
These processes mostly influence the formation of circumbinary
disks, since in a circumstellar accretion disk, the temperature is
higher, and atomic cooling is expected to dominate (Mastrode-
mos & Morris 1999; see also Woitke et al. 1996 for information
on the dominant cooling processes).

4.3. Impact of the approximations on the radiation force

In the free-wind approximation, the radiation force is not ex-
plicitly calculated, but is assumed to be equal to the gravita-
tional force of the AGB star. For the geometrical approximation,
its expression does not depend on the presence of a compan-
ion (Eqs. 19 and 21). This is, however, not the case for the Lucy
and attenuation approximation, because of the directional depen-
dence of τL (Eq .23) and τ (Eq. 28), that enter the evaluation of
Teq and J. The density distribution ρ, optical depths (τ and τL),
dust temperature Teq, wind velocity v, opacity κ = κd + κg, and
Eddington factor Γ in the orbital plane are shown in Figs. 6 and
7 for the Lucy and attenuation approximations, respectively.

In the Lucy simulation, close to the companion, inside the
2-edged bow shock, the density and τL are high (upper mid-
dle panel). The mean intensity is thus increased in that region
(Eq. 22) and under the condition of LTE, the equilibrium temper-
ature is locally higher (Eq. 16). This brakes the symmetry and the
dust condensation surface, inside which no dust forms and which
is defined as the region where T (r) = Tcond, is not spherical any-
more. This 3D surface is shown as the black 2D contour in the
various panels. The opacity increases rapidly across this surface,
which reflects directly on the Eddington factor Γ (bottom right
panel).

These features are different in the simulation with the at-
tenuation approximation (Fig. 7). Because the dust condensa-
tion radius is significantly smaller than the orbital separation,
the dust condensation surface remains approximately spherically
symmetric, as shown by in the various panels. The effect of this
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attenuation is clearly visible behind the companion, where the
optical depth starts to deviate from spherical symmetry. This ef-
fect can be seen as a shadow behind the companion (x > 4 au
side along y = 0 au). This shadow is cast as the material close to
the companion forms a higher-density spiral structure, that ab-
sorbs the radiation from the AGB star. This effect also reduces
the dust temperature in the region behind the companion (upper
right plot). As the dust temperature is already sufficiently low
for dust to form, this does not influence the opacity. But since
the equation for the radiation force (described by Γ, see Eq. 27)
contains a factor e−τ, the radiation force completely vanishes be-
hind the companion.

5. Discussion

5.1. Accuracy of the ray-tracing approximations

To gauge the accuracy and quantify the benefit of our ray-
tracer implementation, we compare the dust temperatures Teq
and the radiation forces, obtained with our prescriptions, to the
results obtained with the 3D ray-tracing radiative transfer solver
Magritte. We focus only on the Lucy and attenuation approx-
imation, as those are the only two prescriptions that leverage
the newly implemented ray-tracer. To make this comparison, we
take the final snapshots of their respective simulations (discussed
in Sect. 4.3), and use these as an input for Magritte.

Although Magritte is usually advertised as a line radiative
transfer code (De Ceuster et al. 2020a,b), we only use its core
ray-tracer and solver functions here. More specifically, we sup-
ply it with the grey opacity (Eq. 6) and emissivity η = κρJ (with
J defined as in Eq. 16), and let it solve the radiative transfer
equation (Eq. 8) along 2 700 uniformly distributed rays, orig-
inating from each SPH particle. From the resulting intensities
along those rays, we then derive the mean intensity J and flux F.
However, the emissivity depends on the dust temperature, which
itself depends on the radiation field. Therefore, to obtain a self-
consistent solution between the dust temperatures and the radia-
tion field, we need to compute them in an iterative way. Starting
from the analytic radiative equilibrium temperature of the geo-
metrical approximation (Eq. 21), the dust opacities are computed
(Eq. 6), and then Magritte is used to compute the mean inten-
sity J. From this, the dust temperatures can then be recomputed
using (Eq. 16). This process is repeated until the change in the
dust temperatures becomes negligible (the resulting mean rela-
tive temperature differences in the final iteration is 0.02%, and
the maximal 2%). To reduce the computational cost, only the
SPH particles within a radius of 30 au are included. This should
not alter the results, as densities (and thus interactions) are di-
luted significantly beyond this radius.

5.1.1. Lucy approximation

Fig. 8 shows the dust temperature Teq, calculated using
Magritte, as a function of distance from the AGB star. Here,
the dust temperature in the geometrical approximation (used as
initial temperature in Magritte) is shown in magenta, results ob-
tained with the Lucy approximation (as calculated in Phantom)
are shown in orange, and results from Magritte are shown in
green. We see that inside the orbit (r <∼ 6 au), the 1D Lucy dust
temperature nicely follows the Magritte prediction. Just before
the location of the companion, a sudden drop in the Magritte
dust temperature appears, as well as a slight increase at the top of
the green curve (at r = 5.5 and 6 au). The increase coincides with
the edge of the accretion disk and spiral arm, which are heated

Fig. 8. Radiative equilibrium temperature as a function of distance from
the primary AGB star for the simulation using the Lucy approximation.
Magenta represents the temperature calculated using the geometrical
approximation, orange using the Lucy approximation, and green using
Magritte. The lower envelope of the Lucy simulation (orange points)
which is not visible as it falls behind the green points, closely follows
the Teq,Lucy dot-dashed line.

Fig. 9. Difference in the orbital plane between the radiative equilibrium
temperature calculated with the Lucy approximation and Magritte. The
temperature is similar in the two cases except in the directions of the
companion where the Lucy approximation yields higher temperatures.

more efficiently. In the Lucy simulation, this effect is much more
pronounced, due to the underlying assumption of spherical sym-
metry, such that, whenever a direction with high optical depth
is encountered, an entire sphere at this optical depth is assumed.
The particles from the Magritte post-processed model with a
low dust temperature, are the particles located just behind the
heated regions. The second drop in the dust temperature around
r ≈ 6 − 6.3 au occurs behind the companion, and is due to the
bow shock acting as a shadow (see also Fig. 9).

Fig. 9 shows the difference between the dust temperature
computed in the Lucy approximation (Fig. 6, upper right panel)
and the one obtained with Magritte, for a slice through the or-
bital plane. While there are clear deviations from the Lucy tem-
perature in the direction of the companion, in other directions,
where the density profile is less perturbed, differences with re-
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Fig. 10. 2D histogram of the relative non-radial component of the ra-
diation force, as a function of distance from the AGB star, given by
Magritte for the snapshot of the model using the Lucy prescription.
The colourbar is in log-scale.

Fig. 11. 2D histogram of the non-radial component of the radiation
force, relative to the gravitational attraction of the AGB star (see Eq. 35)
as a function of distance from the AGB star, given by Magritte for the
snapshot of the model using the Lucy prescription. The colourbar is in
log-scale.

spect to the Lucy temperature remain small. Hence, the Lucy
approximation performs best in regions where the underlying
assumption of spherical symmetry remains approximately valid.
In the direction of the companion, and especially in the accretion
disk around the companion (x = 4 au, y = 0 au), the dust temper-
ature is artificially heated, due to the underlying assumption of
spherical symmetry, as explained above. Behind the companion,
the shadow is not captured in the Lucy approximation, resulting
in the deviations at x > 5 au and y < 0 au (red region).

The analysis of the radiation force ( frad) is more complex, as
this is a vector quantity. In all four prescriptions, the radiation
force is assumed to be radial, thus pointing from the AGB star to
the position of the SPH particle under consideration. To verify
whether this is also true for the radiation flux computed with
Magritte, the non-radial fraction of the radiation force (cos (θ))
can be computed

cos (θ) =
frad · r
|| frad|| ||r||

. (34)

This quantity is shown as a function of distance from the AGB
star in Fig. 10. A clear spike is visible at the location of the com-

Fig. 12. Eddington factor Γ (Eq. 5), calculated using the magnitude of
the flux obtained with Magritte, in a slice through the orbital plane for
the snapshot of the model, using the Lucy prescription.

panion (r = 6 au), due to the dense accretion disk emitting a
significant amount of radiation, which dominates the radiation
force near the accretion disk. Although these forces are highly
non-radial, they are relatively small in magnitude when com-
pared to the local gravitational attraction of the AGB star. This
quantity,

cos (θ) frad

fgrav
=
κ(Teq) cos (θ)||F||/c

GMAGB/r2 , (35)

is displayed in Fig.11. This shows that the assumption of a radial
radiation force is reasonable. In the remainder of this analysis,
we assume a radial radiation force and only consider its magni-
tude. The small spike around the inner boundary at r = RAGB =
1.24 au is a numerical artefact of Magritte that reveals the dis-
cretization of the (spherical) stellar surface. This feature is also
present in Fig. 16, but it is inconsequential.

The Eddington factor Γ (Eq. 5) is shown for a slice through
the orbital plane in Fig. 12. First, we compare Γ resulting from
Magritte (Fig. 12) to Γ resulting from the Lucy approximation
(Fig. 6, lower right panel). In the Magritte case, the dust con-
densation surface is a perfect sphere, and since it is smaller than
the orbital separation, it is not perturbed by the companion, and
remains spherically symmetric. This is in contrast to the dust
condensation surface in Fig. 6, which is extended beyond the
companion and even engulfs it. The radiation force inside the
accretion disk around the companion is negligible (Γ ∼ 0), since
the high local densities make the radiation field isotropic, such
that the contributions to the radiation force from different direc-
tions cancel each other out. Behind the companion (x > 5 au
and y < 0 au), there is a low-Γ region, and the resulting shadow
looks similar to the shadow cast in that attenuation simulation
(Fig. 7, lower right panel). The radiation force increases again
when moving further out, due to the fact that material above and
below the shadow in the orbital plane shine and accelerate the
material again.
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Fig. 13. Radiative equilibrium temperature as a function of distance
from the primary AGB star, for the simulation using the attenuation
prescription. Magenta represents the temperature calculated, using the
geometrical prescription, orange using the attenuation prescription, and
green using Magritte.

Fig. 14. Difference in the orbital plane between the radiative equilibrium
temperature, calculated with the attenuation prescription Magritte. Sig-
nificant differences persist over the entire domain.

5.1.2. Attenuation approximation

Fig. 13 shows the dust temperature Teq, calculated using
Magritte as a function of distance from the AGB star. The
Magritte results for the snapshot of the simulation, using the
attenuation prescription, show the same pattern as in the Lucy
approximation. Within the orbit, the Magritte dust temperature
follows closely the 1D Lucy approximation (and not the atten-
uation approximation), and at the location of the companion a
drop appears due to the interaction of the high density spiral
arm. In contrast to the Lucy approximation, there is only one
drop and one peak, as there is only one spiral arm in this sim-
ulation, and no accretion disk or bow shock are formed. In the
attenuation approximation, the dust temperature decreases faster
than in the geometrical and Lucy approximation, similar to the
1D profile (Fig. 3). This is caused by the fact that the attenua-
tion approximation only accounts for absorption and not for re-
emission, resulting in an underestimation of the intensities and

Fig. 15. 2D histogram of the relative non-radial component of the radi-
ation force, as a function of the distance from the AGB star, given by
Magritte, for the snapshot of the simulation using the attenuation pre-
scription. The colourbar is in log-scale.

Fig. 16. 2D histogram of the non-radial component of the radiation
force, relative to the gravitational attraction of the AGB star (see
Eq. 35), as a function of distance from the AGB star, given by by
Magritte, for the snapshot of the simulation using the attenuation pre-
scription. The colourbar is in log-scale.

dust temperatures. Looking at the region behind the companion,
both Magritte and the attenuation approximation show a drop
in the dust temperature. This drop starts at slightly lower radii
in the attenuation approximation, compared to the Magritte cal-
culation. In the attenuation approximation, the shadow imme-
diately forms when high densities are encountered, as the opti-
cal depth increases. In a full radiative transfer treatment, when
a high density region is encountered, the first layers absorb a lot
of photons, locally trapping some of the radiation and produc-
ing a local heating that is seen in the peak in Teq,Magritte at 6 au.
After this peak, the temperature drops at ≈ 7 au, as radiation
escapes isotropically. The temperature decrease in the attenua-
tion approximation is also too strong, and this is caused by the
radiation being only blocked, while in Magritte, re-emission is
accounted for.

Fig. 14 shows the difference between the dust temperature,
resulting from the attenuation approximation (see Sect. 2.2.4;
Fig. 7, upper right panel), and the one obtained with Magritte,
for a slice through the orbital plane. Close to the AGB star, the
difference in dust temperature remains small, but the differences
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Fig. 17. Eddington factor Γ (Eq. 5), calculated using the magnitude of
the flux vector, in a slice through the orbital plane, using Magritte for
the snapshot of the simulation, using the attenuation prescription.

increase rapidly further out. In the shadow region behind the
companion (x > 5 au and y < 0 au), the temperature in the
attenuation approximation is too cold, but this scheme is able to
reproduce the shadow, but the effect is exacerbated.

The non-radial fraction of the radiation force, shown in
Fig. 15, is globally lower than in the case of the Lucy approxi-
mation, mainly because no accretion disk is forming in the atten-
uation simulation, and thus there is no region where the photons
are trapped. When normalizing the radiation force to its maxi-
mum value (see Fig.16), we see a small non-radial contribution,
similar to the Lucy case This renders the conclusion that the as-
sumption of a radial radiation force is reasonably good.

The Eddington factor Γ (Eq. 5) in the orbital plane is shown
in Fig. 17. Due to the higher temperature estimate in Magritte,
the dust condensation radius is shifted farther out than in the
attenuation approximation (Fig. 7), resulting in a lower radia-
tion force close to the AGB star. Further out and away from the
shadow, the Eddington factor remains approximately constant
according to Magritte, while it is monotonically decreasing in
the attenuation approximation. Thus, the global radiation force
is not correctly described by the attenuation approximation, for
the same reason as the dust temperature. The shadow behind the
companion (x > 5 au and y < 0 au) is reproduced by the atten-
uation approximation. However, due to the weak radiation force
in this region, it is unclear whether this feature is modelled ac-
curately or overcompensated.

In summary, for regions that (locally) resemble a spherically
symmetric wind (i.e. away from the companion), the Lucy ap-
proximation provides a correct estimate for the dust tempera-
ture and radiation force, taking into account the radiation that
is absorbed and re-emitted isotropically. This effect heats up the
material compared to the geometrical approximation. Close to
the companion, dust is artificially heated due to the spherical
symmetric assumption underlying the Lucy approximation. The
Lucy approximation fails to account for the shadow cast behind
the companion. On the other hand, in the attenuation approxi-
mation, the regions away from the companion are not modelled
correctly. The material is artificially cooled, causing a reduction
of the radiation force. Close to the companion, a shadow forms,

which is captured by the attenuation approximation both in the
dust temperature as well as in the radiation force. However, the
drastic artificial decrease of the radiation force, and the fact that
most of the morphological simulation is spherically symmetric,
favours the Lucy approximation. This suggests that a combina-
tion of the Lucy and attenuation approximation might yield even
better results, combining the strengths of both approximations.

5.2. Future work

One of the ingredients still missing in this study is a treatment
of pulsations. In our approach, pulsations are neglected and ma-
terial is launched at a preset velocity from the stellar surface. In
future studies, pulsations will be modelled by simulating a radi-
ally oscillating inner boundary acting as a piston. This method
was originally used in the 1D study by Bowen (1988), but has
recently been implemented in the SPH context by Aydi & Mo-
hamed (2022). After including pulsations and adopting the Lucy
approximation from this study, the full Bowen (1988) study can
be replicated in 3D, and include a companion.

Furthermore, the treatment of the dust opacity can still be
improved. Siess et al. (2022) already implemented carbon dust
formation in Phantom, which can be used in combination with
this study. Using this formalism, the dust opacities can be made
more consistent with the physical and chemical environments of
stellar outflows, which will result in a more accurate description
of the radiation force.

An accurate treatment of both chemical processes and cool-
ing are of crucial importance as well (e.g. Boulangier et al. 2019;
Van de Sande & Millar 2019). The chemistry can alter the poly-
tropic index, as well as the mean molecular weight, which now
are assumed to be constant. To account for the complex chem-
istry taking place in AGB outflows, without trading too much of
the required computation time, machine learning techniques will
be used to emulate the chemical network (e.g. Holdship et al.
2021; Grassi et al. 2022), reducing the computation time to al-
low for an on-the-fly simulation of the chemistry (Maes et al. in
prep). Furthermore, we could improve on the cooling prescrip-
tions. Cooling has a significant impact on the energy equation,
since insufficient cooling can prevent the formation of accretion
disks around the companion (Theuns & Jorissen 1993, Malfait
et al. in prep.). Moreover, it can alter the transfer rates of both
mass and angular momentum.

A final improvement for the simulations itself is the gas-dust
interaction. In this study position coupling is assumed, although
in a dust-driven wind the gas is dragged by the faster moving dust
(Mattsson & Sandin 2021), which might result in significant drift
velocities. In some cases this drag can lead to a decrease in both
the mass-loss rate as well as the wind velocity (Sandin & Matts-
son 2020), which in turn influences the morphology as well. In
Phantom, two approaches are already implemented to account
for this drag. In the first approach, the two fluids are treated sep-
arately (Laibe & Price 2012), while in the second, both fluids can
be combined using the so-called one-fluid approximation (Laibe
& Price 2014a,b; Price & Laibe 2015).

Once truly realistic models are acquired, these forward mod-
els can be used to compare to observations. This can be done
using radiative transfer codes like MCFOST (Pinte et al. 2006;
Tessore et al. 2021) or Magritte (De Ceuster et al. 2020a,b) to
produce synthetic observations. These synthetic observations are
constructed by tracing chemical species in the simulation, and
creating (synthetic) spectral line maps. These synthetic observa-
tions can then be compared to real observations, unraveling the
origin of the complexities of these winds.
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6. Summary

In this paper, we present the implementation of a ray tracer for
radiative transfer in the SPH code Phantom. Using this ray tracer,
a 3D map of the optical depth can be obtained, a key quan-
tity that is needed, for example, in AGB wind simulations. This
technique enables us to investigate four different radiative trans-
fer approximations: the free-wind approximation (no radiative
transfer), the geometrical approximation (including geometrical
dilution, as well as dust formation), the Lucy approximation (in-
cluding radiation not exclusively coming from the AGB star),
and the attenuation approximation (including the absorption of
the stellar flux without re-emission).

We performed simulations of a single AGB star for each of
the four prescriptions, with a low and high mass-loss rate, re-
sulting in eight different models. The velocity profile, resulting
from the free-wind approximation, remains relatively constant
throughout the entire spatial domain. In the other approxima-
tions, where the radiation force and dust formation are accounted
for, there is an initial decrease in velocity close to the AGB star,
since this region is too hot for dust to condensate. Beyond the
dust condensation radius, the material is accelerated outwards,
allowing the velocity to escape the escape value. In the low mass-
loss rate regime, the effects of the Lucy and attenuation approx-
imations are small and the velocity profiles are almost identical.
In the high mass-loss regime, the effects and their differences
become more pronounced. For the Lucy approximation, the dust
condensation radius moves outwards, resulting in a lower ter-
minal velocity compared to the geometrical approximation. For
the attenuation approximation, the dust condensation radius is
shifted inwards, activating the radiation force earlier in the wind,
but as radiation is attenuated, the radiation force also decreases,
resulting in a flat velocity profile.

We also considered binary systems and investigated the ef-
fect of the different radiative transfer approximations on the wind
morphology. In the free-wind approximation, a thin, two-edged
spiral structure forms, while in the geometrical approximation,
a thicker spiral is present, with increased interaction of the wind
close to the companion. Again, in the low mass-loss rate regime
the Lucy and attenuation approximation follow the geometrical
approximation, while for the high mass-loss rate regime differ-
ences appear. In the Lucy approximation, an accretion disk is
able to form around the companion because of the lower wind
velocity. This accretion disk creates an additional bow shock,
increasing the morphological complexity. In the attenuation ap-
proximation, the two-edged spiral is compressed significantly,
such that the spiral arms interact, forming a single Archimedean
spiral structure.

In order to gauge the accuracy of these radiative transfer ap-
proximations, and hence the applicability, we compared the dust
temperature and the radiation force from the simulations, using
the Lucy and attenuation approximation, to results obtained with
the full 3D radiative transfer code Magritte. We showed that the
non-radial component of the radiation force is small, which im-
plies that the often made assumption of a radial radiation force is
adequate. The Lucy approximation can reproduce the dust tem-
perature and the radiation field accurately in the parts of the sim-
ulation that resemble a spherically symmetric outflow. However,
in the direction of the companion, the density is higher and the
radiation field is overestimated due to the underlying assumption
of spherical symmetry in the Lucy approximation. The Lucy ap-
proximation can model the radiation force correctly in regions
that resemble a spherically symmetric outflow, but this approxi-
mation does not reproduce the shadow cast behind the compan-

ion because of excessive re-emission. In the attenuation approx-
imation, the dust temperature and the radiation force are under-
estimated, because this approximation only models the extinc-
tion of radiation, but not the re-emission. Although, as expected,
the attenuation approximation does account for the shadow cast
behind the companion. In conclusion, the Lucy approximation
turns out to be the most adequate radiative transfer prescription
for AGB binary simulations, since most of the domain in the
considered simulations resembles a spherically symmetric out-
flow, and the acceleration close to the AGB star is important for
the companion interaction.
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Appendix A: Ray tracer

In order to investigate and validate the trade-offs made during the
development of the ray-tracer (see Sect. 2.3), we compare its per-
formance against a second ray tracer algorithm that is optimized
for accuracy, but not for computational speed. This ray tracer
would be too slow to be used on-the-fly in Phantom simulations,
but is useful to gauge the performance of our implementation. In
this appendix, we gradually build up the reasoning that led to the
ray tracer that was eventually implemented in Phantom, start-
ing from this ideal (but slow) ray tracer (IRS; ideal ray-tracing
scheme).

The ideal ray tracer works as follows. Starting from a specific
location in the simulation, it calculates the nearest neighbours,
out of which it will select the next particle to be considered on
the ray. There, it recalculates the nearest neighbours, to again
decide which particle should be considered next, and, as such,
moves along the ray. To minimize the step size, and obtain the
optimal discretization for integrals along the ray, the smallest
set of neighbours is used. This set is obtained using a Delau-
nay tetrahedralization, which is used in Magritte as well (De
Ceuster et al. 2020b). While walking through the selected parti-
cles along a ray, these particles are projected onto the ray, and, at
these projected points, the integrand is evaluated (using Eq. 31).
To calculate the optical depth, τIRS, in this ideal scenario, a ray
is traced starting from the particle in question, in the direction
of the AGB star. This ensures that each of the rays properly rep-
resents the actual integral that is calculated. The resulting algo-
rithm is similar to Kessel-Deynet & Burkert (2000).

To speed up the calculation, while trying to remain as accu-
rate as possible, different improvements are investigated in the
rest of this Section2. To quantify the performance, the optical
depth, τ, calculated with our improved scheme, is compared to
its IRS value, τIRS, by calculating a relative error

δrel =
1

Npart

Npart∑
i=1

∣∣∣∣∣∣ τIRS,i − τi

(τIRS,i + τi)/2

∣∣∣∣∣∣ . (A.1)

To test the algorithm, we used an SPH model of an AGB binary,
more specifically, dump 600 of model v05e50 (vinj = 5 km s−1,
e = 0.5 using the free-wind approximation) of Malfait et al.
(2021). This is a late snapshot of the most complex morphology
in that study, using ≈ 1.2 × 106 SPH particles.

A.1. Nearest neighbours

A first bottleneck in the IRS algorithm, is the computation of
the Delaunay nearest neighbours. Since Phantom already works
with a kd-tree to store its particles (a tree-like data structure that
significantly speeds up nearest neighbour determinations), cal-
culating nearest neighbours leveraging this tree is much faster.
The set of neighbours includes ∼ 60 particles, such that the sam-
pling along the ray can take larger steps, and hence the integra-
tion is done more crudely. Using this nearest neighbour set and
comparing the results to the IRS, using Eq. A.1 results in a rela-
tive error of only 1%, while giving a speed-up of a factor 2. This
speedup does not yet include the calculation of the Delaunay
nearest neighbours (taking a significant amount of time), such
that the actual speed-up is even higher.

2 All ray-tracing algorithms used in this appendix, can be found in the
‘utils’ routines of Phantom (https://github.com/danieljprice/
phantom/blob/master/src/utils/utils_raytracer_all.F90).

Fig. A.1. Relative error (Eq. A.1) and computation time, required for
calculating τ as a function of the number of rays traced in the reference
model. The solid red line represents the relative error using the SPH
nearest neighbours, blue the computation time, and green the number
of rays in the IRS case.

A.2. Ray directions

Tracing rays inwards is inefficient, since plenty of SPH particles
will be passed several times, especially those close to the star. To
avoid this, one can reverse the ray tracing by starting at the stel-
lar surface, and pointing the rays outwards until the edge of the
simulation is reached, instead of tracing a ray from each particle
to the star. The rays that originate from the star, should be traced
uniformly outwards. The directions of these rays can be deter-
mined using HEALPix3 (Górski et al. 2005). HEALPix subdi-
vides the 2-sphere into iso-laterally distributed equal area pixels,
such that the centre of each pixel can be used as the direction
of a ray. The scheme starts with 12 pixels, so-called HEALPix-
order 0, and the amount of rays can be increased by subdividing
each cell into four, increasing the order o by 1. This results in
nrays = 12 × 4o. Once the rays are traced, the information along
the rays needs to be mapped back to the SPH particles. Using
HEALPix, the closest ray to a particle can be found easily by
leveraging its smart pixel positioning. Once the nearest ray is
found, the particle is projected on the ray, and the integral is
evaluated there by linear interpolation between the two closest
known values along the ray.

The performance of this algorithm strongly depends on the
HEALPix order. The relative error and the required computation
time are shown as a function of the number of rays in Fig. A.1.
There is an improvement in computation time, as long as the
number of rays is less than the number of particles in the simu-
lation. This is, however, at the expense of the relative error. For
HEALPix order 5, for instance, the computation time goes down
with a factor 250, while inducing a relative error of 2%.

A.3. Ray interpolation

To further reduce the 2% relative error of the algorithm, we in-
vestigate the interpolation from the rays onto the particles. In-
stead of using only the information of the ray nearest to a par-

3 https://healpix.sourceforge.io
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Fig. A.2. Relative error (Eq. A.1) as a function of the number of rays
used in the interpolation (using HEALPix order 5).

ticle, an interpolation between multiple rays can be used. We
consider either the four or nine closest rays, as well as different
interpolation exponents, k, in the interpolation formula, given by

Ii =
1∑

j=1 r−k
j

∑
j

I j

rk
j

, (A.2)

where Ii is integral at the location of the i’th particle, I j is the
integral at the projection of the i’th particle on the j’th ray, and
r j the distance between these two. Here, j is a sum over the four
or nine closest rays, and k specifies the interpolation exponent.
The relative error as a function of the number of rays, used in the
interpolation for HEALPix order 5, is shown in Fig. A.2. There
is a significant improvement when moving from one to four rays,
as the latter interpolation can account for differences in between
rays. However, going up to nine rays does not significantly im-
prove the accuracy, as most of the smoothing already happens in
between the four closest rays. The relative error even increases
slightly when using k = 1, because the interpolation smooths out
large variations. Since in our simulations large variation in den-
sity, and thus optical depth, are to be expected, using nine rays
and k = 1 will not be ideal. It turns out that for a interpolations
exponent of k = 2 and four rays is the best combination for the
specific model that we considered.

The resulting relative error as a function of computation time
for this interpolation is shown in Fig. A.3. For low HEALPix or-
ders, the interpolation takes a significant amount of time, while
only slightly improving the relative error. This is because the
initial calculations along the few rays, that are traced, cannot
capture all the complexities in between these rays. Going to
higher orders (starting from HEALPix order 3) the interpolation
is worthwhile. The increase in computation time becomes ever
smaller, as the extra time used for the interpolation only scales
with the number of particles, and not with the number of rays.
Using HEALPix order 5, there is a speedup of a factor 250 com-
pared to the IRS, while obtaining a relative error of only 1.5%.

Due to this significant speed-up, the calculation of the inte-
grals using HEALPix order 5 only take about 10% of the compu-
tation time of a normal SPH hydro timestep (or shorter for lower
orders). Hence, the extra computation time to include these cal-
culations is practically feasible to perform as on-the-fly calcula-
tions.

Fig. A.3. Relative error (Eq. A.1) as a function of computation time
for calculating τ. Different dots represent different HEALPix orders,
where the blue represents no interpolation, and the orange represents
the interpolation using four rays and k = 2.

Appendix B: Additional figures

Fig. B.1. Lucy optical depth, τL (Eq. 23), as a function of radial dis-
tance in the single-star simulation, for the high mass-loss rate (3 ×
10−6 M⊙ yr−1) model.

Fig. B.2. Optical depth, τ (Eq. 28), in the attenuation prescription as a
function of radial distance, for the high mass-loss rate (3×10−6 M⊙ yr−1)
model.
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Fig. B.3. Density distribution in a slice through the meridional plane for the four prescriptions: free-wind (top left), geometrical (top right), Lucy
(bottom left), and attenuation (bottom right) prescription, for the high mass-loss rate case with a binary companion. Both stars are on the x-axis,
where the primary AGB star is on the left, and the companion on the right.

Fig. B.4. Density distribution in a slice through the orbital plane close
to the companion in the Lucy approximation, revealing the presence of
an accretion disk. The small arrows indicate the direction of the velocity
field.
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