Ray Tracing in Fluid Simulations: Enhancing AGB Outflow Simulations

Mats Esseldeurs

Instituut voor sterrenkunde KU Leuven **Collaborators:** L. Siess F. De Ceuster W. Homan J. Malfait S. Maes T. Konings T. Ceulemans O. Vermeulen L. Decin

Evolution of 1 M_{\odot} star

AGB stars White dwarf Post-AGB 10³ Asymtotic giant Low and intermediate mass branch • $M_{ini} \in [0.8 \text{ M}_{\odot}, 8 \text{ M}_{\odot}]$ Red Luminosity [L_☉] giant branch 10^{1} Subgian branch Main Sequence 10⁰ 7000 6000 5000 4000 3000 Temperature [K]

Evolution of 1 M_{\odot} star

AGB stars ≺ White dwarf Post-AGB 10³ Asymtotic giant branch Low and intermediate mass • $M_{ini} \in [0.8 \text{ M}_{\odot}, 8 \text{ M}_{\odot}]$ Luminosity [L_☉] 10^{1} Subgian branch Main Sequence 10⁰ -7000 6000 5000 4000 3000 Temperature [K]

Evolution of 1 M_{\odot} star

AGB stars

- Low and intermediate mass
- $M_{ini} \in \left[0.8 \text{ M}_{\odot}, 8 \text{ M}_{\odot}\right]$
- Significant mass loss
 - $\dot{M} = 10^{-8} 10^{-4} \,\mathrm{M_{\odot}/yr}$
 - $v_{\infty} = 5 25 \text{ km/s}$
- Dust-driven wind

AGB's dust-driven wind

AGB outflows

- Non-spherically symmetric
- Companion perturbed
- understanding through simulations

• 3D Smoothed Particle Hydrodynamics (SPH)

•
$$\vec{a} = -\frac{GM_{AGB}}{r_1^2} (1 - \Gamma) \hat{r}_1 - \frac{GM_{comp}}{r_2^2} \hat{r}_2$$

• 3D Smoothed Particle Hydrodynamics (SPH)

•
$$\vec{a} = -\frac{GM_{AGB}}{r_1^2}(1-\Gamma)\hat{r}_1 - \frac{GM_{comp}}{r_2^2}\hat{r}_2$$

Gravity
AGB star

• 3D Smoothed Particle Hydrodynamics (SPH)

•
$$\vec{a} = -\frac{GM_{AGB}}{r_1^2}(1-\Gamma)\hat{r}_1 - \frac{GM_{comp}}{r_2^2}\hat{r}_2$$

Gravity
AGB star
Gravity
Gravity
Gravity
Gravity

• 3D Smoothed Particle Hydrodynamics (SPH)

• 3D Smoothed Particle Hydrodynamics (SPH)

• 3D Smoothed Particle Hydrodynamics (SPH)

• External acceleration

• Eddington factor: radiative acceleration

•
$$\Gamma = \frac{\kappa F/c}{GM_{AGB}/r_1^2}$$
, $\kappa(T_{eq}) = \frac{\kappa_{max}}{1 + exp[(T_{eq} - T_{cond})/\delta]} + \kappa_g$

• 3D Smoothed Particle Hydrodynamics (SPH)

• External acceleration

• Eddington factor: radiative acceleration

•
$$\Gamma = \frac{\kappa F/r}{GM_{AGB}/r_1^2}$$
, $\kappa (T_{eq}) = \frac{\kappa_{max}}{1 + exp[(T_{eq} - T_{cond})/\delta]} + \kappa_g$

Prescription	Γ	T _{eq}
Free-wind	$\Gamma = 1$	

Prescription	Γ	T _{eq}
Free-wind	$\Gamma = 1$	
Geometrical	$\Gamma = \frac{\kappa L_{AGB}}{4\pi cGM_{AGB}}$	$T_{eq}^4 = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_\star}{r}\right)^2} \right) T_\star^4$

Prescription	Γ	T _{eq}
Free-wind	$\Gamma = 1$	
Geometrical	$\Gamma = \frac{\kappa L_{AGB}}{4\pi cGM_{AGB}}$	$T_{eq}^{4} = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_{\star}}{r}\right)^2} \right) T_{\star}^{4}$
Lucy	$\Gamma = \frac{\kappa L_{AGB}}{4\pi cGM_{AGB}}$	$T_{eq}^{4} = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_{\star}}{r}\right)^{2}} + \frac{2}{3}\tau_{L} \right) T_{\star}^{4}$

Prescription	Γ	T _{eq}
Free-wind	$\Gamma = 1$	
Geometrical	$\Gamma = \frac{\kappa L_{AGB}}{4\pi cGM_{AGB}}$	$T_{eq}^{4} = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_{\star}}{r}\right)^2} \right) T_{\star}^{4}$
Lucy	$\Gamma = \frac{\kappa L_{AGB}}{4\pi cGM_{AGB}}$	$T_{eq}^{4} = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_{\star}}{r}\right)^{2}} + \frac{2}{3}\tau_{L} \right) T_{\star}^{4}$
Attenuation	$\Gamma = \frac{\kappa L_{AGB}}{4\pi c G M_{AGB}} e^{-\tau}$	$T_{eq}^{4} = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_{\star}}{r}\right)^{2}} \right) e^{-\tau} T_{\star}^{4}$

•
$$\kappa_i \rho_i$$

Ray-tracer

Ray-tracer

At each point K:

 d_i

•
$$\kappa_i \rho_i$$

•
$$\kappa_i \rho_i$$

$3D \rightarrow Healpix$

Interpolation along a ray

At each point K:

• τ_i

Linear interpolations between points

Interpolation along a ray

At each point K:

• τ_i

Linear interpolations between points

au at closest point along the ray

Trace more rays

Trace more rays

Interpolate τ between closest rays

Morphological structures

[ŋ	
y [a	

y [au]

Parameter	Value	Unit	-10
$\dot{M}_{ m AGB}$	3×10^{-6}	$M_{\odot} yr^{-1}$	
$M_{ m AGB}$	1.02	${ m M}_{\odot}$	
$L_{ m AGB}$	4384	$ m L_{\odot}$	10
$T_{\rm eff,AGB}$	2874	Κ	
R _{AGB}	1.24	au	

Validation Study

- Full 3D radiation transfer code Magritte
- Lucy approximation most accurate

x [au]

Conclusions

- Dust formation and radiative transfer is crucial
- Different approximations can make significant changes
- Lucy approximation most accurate, but a combination might give even better results

Esseldeurs et al. (2023)