Impact of different radiative transfer prescriptions on the morphological structures of AGB outflows

Mats Esseldeurs

Instituut voor sterrenkunde KU Leuven **Collaborators:** L. Siess F. De Ceuster W. Homan J. Malfait S. Maes T. Konings T. Ceulemans L. Decin

Evolution of 1 M_{\odot} star

AGB stars

- Low and intermediate mass
- $M_{ini} \in \left[0.8 \text{ M}_{\odot}, 8 \text{ M}_{\odot}\right]$
- Significant mass loss
 - $\dot{M} = 10^{-8} 10^{-4} \,\mathrm{M_{\odot}/yr}$
 - $v_{\infty} = 5 25 \text{ km/s}$
- Dust-driven wind

AGB's dust-driven wind

AGB outflows

- Non-spherically symmetric
- Companion perturbed
- understanding through simulations

- 3D Smoothed Particle Hydrodynamics (SPH)
- Phantom by Price et al. (2018), Siess et al. (2022)

•
$$\vec{a} = -\frac{GM_{AGB}}{r_1^2} (1 - \Gamma) \hat{r}_1 - \frac{GM_{comp}}{r_2^2} \hat{r}_2$$

- 3D Smoothed Particle Hydrodynamics (SPH)
- Phantom by Price et al. (2018), Siess et al. (2022)

•
$$\vec{a} = -\underbrace{\frac{GM_{AGB}}{r_1^2}(1-\Gamma)\hat{r}_1}_{\text{Gravity}} - \frac{\frac{GM_{comp}}{r_2^2}\hat{r}_2}{r_2^2}\hat{r}_2$$

- 3D Smoothed Particle Hydrodynamics (SPH)
- Phantom by Price et al. (2018), Siess et al. (2022)

•
$$\vec{a} = -\frac{GM_{AGB}}{r_1^2}(1-\Gamma)\hat{r}_1 - \frac{GM_{comp}}{r_2^2}\hat{r}_2$$

Gravity
AGB star
Gravity
Companion

- 3D Smoothed Particle Hydrodynamics (SPH)
- Phantom by Price et al. (2018), Siess et al. (2022)

- 3D Smoothed Particle Hydrodynamics (SPH)
- Phantom by Price et al. (2018), Siess et al. (2022)

- 3D Smoothed Particle Hydrodynamics (SPH)
- Phantom by Price et al. (2018), Siess et al. (2022)

• External acceleration

• Eddington factor: radiative acceleration

•
$$\Gamma = \frac{\kappa F/c}{GM_{AGB}/r_1^2}$$
, $\kappa(T_{eq}) = \frac{\kappa_{max}}{1 + exp[(T_{eq} - T_{cond})/\delta]} + \kappa_g$

- 3D Smoothed Particle Hydrodynamics (SPH)
- Phantom by Price et al. (2018), Siess et al. (2022)

• External acceleration

• Eddington factor: radiative acceleration

•
$$\Gamma = \frac{\kappa F/c}{GM_{AGB}/r_1^2}$$
, $\kappa (T_{eq}) = \frac{\kappa_{max}}{1 + exp[(T_{eq} - T_{cond})/\delta]} + \kappa_g$

Approximations	Γ	T _{eq}
Free-wind	$\Gamma = 1$	

Approximations	Γ	T _{eq}
Free-wind	$\Gamma = 1$	
Geometrical	$\Gamma = \frac{\kappa L_{AGB}}{4\pi cGM_{AGB}}$	$T_{eq}^4 = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_\star}{r}\right)^2} \right) T_\star^4$

Approximations	Γ	T _{eq}
Free-wind	$\Gamma = 1$	
Geometrical	$\Gamma = \frac{\kappa L_{AGB}}{4\pi c G M_{AGB}}$	$T_{eq}^{4} = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_{\star}}{r}\right)^2} \right) T_{\star}^{4}$
Lucy	$\Gamma = \frac{\kappa L_{AGB}}{4\pi cGM_{AGB}}$	$T_{eq}^{4} = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_{\star}}{r}\right)^{2}} + \frac{2}{3}\tau_{L} \right) T_{\star}^{4}$

Approximations	Γ	T _{eq}
Free-wind	$\Gamma = 1$	
Geometrical	$\Gamma = \frac{\kappa L_{AGB}}{4\pi cGM_{AGB}}$	$T_{eq}^{4} = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_{\star}}{r}\right)^2} \right) T_{\star}^{4}$
Lucy	$\Gamma = \frac{\kappa L_{AGB}}{4\pi cGM_{AGB}}$	$T_{eq}^{4} = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_{\star}}{r}\right)^{2}} + \frac{2}{3}\tau_{L} \right) T_{\star}^{4}$
Attenuation	$\Gamma = \frac{\kappa L_{AGB}}{4\pi c G M_{AGB}} e^{-\tau}$	$T_{eq}^4 = \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{R_\star}{r}\right)^2} \right) e^{-\tau} T_\star^4$

Parameter	Value	Unit	Ξ
$\dot{M}_{ m AGB}$	3×10^{-6}	$M_{\odot} yr^{-1}$	al
$M_{ m AGB}$	1.02	${ m M}_{\odot}$	
$L_{ m AGB}$	4384	$ m L_{\odot}$	
$T_{\rm eff,AGB}$	2874	K	
$R_{ m AGB}$	1.24	au	

free-wind 100--15-16 <u>___</u> _m2 ق امق ل 17_ 0 • -18 -100 -100 100 0 x [au] -19

Parameter	Value	Unit	Γ
$\dot{M}_{ m AGB}$	3×10^{-6}	$M_{\odot} yr^{-1}$	al
$M_{ m AGB}$	1.02	${ m M}_{\odot}$	
$L_{ m AGB}$	4384	$ m L_{\odot}$	
$T_{\rm eff,AGB}$	2874	Κ	
$R_{ m AGB}$	1.24	au	

geometrical 100--15-16 _m2 ق امق ل 17_ 0 -18 -100 -100 100 0 x [au] -19

Parameter	Value	Unit	Ξ
$\dot{M}_{ m AGB}$	3×10^{-6}	$M_{\odot} yr^{-1}$	al
$M_{ m AGB}$	1.02	${ m M}_{\odot}$	
$L_{ m AGB}$	4384	$ m L_{\odot}$	
$T_{\rm eff,AGB}$	2874	K	
$R_{ m AGB}$	1.24	au	

Lucy 100--15-16 <u></u> -17 [g cm 0 • -18 -100 -100 100 0 x [au] -19

Parameter	Value	Unit	Ξ
$\dot{M}_{ m AGB}$	3×10^{-6}	$M_{\odot} yr^{-1}$	al
$M_{ m AGB}$	1.02	${ m M}_{\odot}$	
$L_{ m AGB}$	4384	$ m L_{\odot}$	
$T_{\rm eff,AGB}$	2874	K	
$R_{ m AGB}$	1.24	au	

Lucy 100--15-16 <u></u> -17 [g cm 0 • -18 -100 -100 100 0 x [au] -19

Parameter	Value	Unit	_
	2 × 10-6		n
MAGB	3 × 10 °	IVI _⊙ yr	[a
$M_{ m AGB}$	1.02	${ m M}_{\odot}$	>
$L_{ m AGB}$	4384	$ m L_{\odot}$	
$T_{\rm eff,AGB}$	2874	K	
$R_{ m AGB}$	1.24	au	

attenuation 100-0 -100 -100 100 0 x [au]

-14

-15

m2 ق امق ل 17

-18

Attenuation Approximation

Parameter	Value	Unit	_
	2 × 10-6		n
MAGB	3 × 10 °	IVI _⊙ yr	[a
$M_{ m AGB}$	1.02	${ m M}_{\odot}$	>
$L_{ m AGB}$	4384	$ m L_{\odot}$	
$T_{\rm eff,AGB}$	2874	K	
$R_{ m AGB}$	1.24	au	

attenuation 100-0 -100 -100 100 0 x [au]

-14

-15

m2 ق امق ل 17

-18

[ŋ	
y [a	

y [au]

Value	Unit	-10
3×10^{-6}	$M_{\odot} yr^{-1}$	
1.02	${ m M}_{\odot}$	
4384	$ m L_{\odot}$	10
2874	Κ	
1.24	au	
	Value 3×10^{-6} 1.02 4384 2874 1.24	$\begin{array}{c cc} Value & Unit \\ 3\times 10^{-6} & M_{\odot} yr^{-1} \\ 1.02 & M_{\odot} \\ 4384 & L_{\odot} \\ 2874 & K \\ 1.24 & au \end{array}$

Validation Study

- Full 3D radiation transfer code Magritte
- Lucy approximation most accurate

-10

0.00

10

Ó

x [au]

Conclusions

- Dust formation and radiative transfer is crucial
- Different approximations can make significant changes
- Lucy approximation most accurate

